Gesetztes Ziel war es nach 6 monatiger Bauzeit im Mai 2020 das Gebäude und die Fliessrinnen soweit aufgebaut zu haben , das man im Juni 2021 mit der Muschelzucht beginnen konnte . Diese Fliessrinnen werden mit feinem Kies und Wasser aufgefüllt , ein sich aufgebauter Biofilm als Nahrung , ist dann die Grundlage für den Besatz mit Jungen Bachmuscheln
Jahr: 2021
Bau Muschelzucht Teil 2
Wenn auch die Materialkosten für den Umbau vom Land Rheinland Pfalz übernommen wurden, bleibt die Frage der Umsetzung ,und wer A sagt der muss B auch sagen . Die Arge Nister hat B gesagt .
Abbruchphase und Wiederaufbau bei wahrlich keinen guten Wetterbedingungen
Aussenansicht nach Umbau
Wieviel ehrenamtliche Arbeit in einem solchen Projekt steckt , wissen wahrscheinlich nur die, die tatkräftig mitgeholfen haben . Hier gilt der Dank allen ortsansässigen Helfern die unermütlich vor Ort waren , den Mitarbeitern/innen der Arbeitsgruppe Fliessgewässerökologie der Universität Koblenz / Landau sowie der Jägerschaft des Jagdreviers Stein-Wingert.
Die Eigenleistung von allen kann man bis zu diesem Zeitpunkt mit rund 40 000 € beziffern.
Fachhochschule Bingen zu Gast bei der Arge Nister
Manfred Fetthauer
Kältester April seit 40 Jahren – ein Problem auch für unsere Gewässer
Eutrophierung (Massenentwicklung von Algen durch einen hohen Nährstoffeintrag ins Gewässer) ist ein weitverbreitetes Problem unserer Gewässer, welches das Erreichen des Ziels der Wasserrahmenrichtlinie, den guten ökologischen Zustand, in vielen Fließgewässern verhindert. Doch in diesem Jahr wurde das Problem noch zusätzlich verstärkt. Wie auch die Pflanzen an Land, so wird auch das Wachstum der Algen hauptsächlich durch das Licht, also die Tageslänge und die Sonnenstunden, gesteuert. Laut Deutschem Wetterdienst (DWD) lag der April 2021 mit rund 215 Sonnenstunden deutlich über dem langjährigen Mittel (151 Sonnenstunden), so dass die Algen sehr gute Wachstumsbedingungen hatten. Anders als warmblütige Kühe, die auch bei niedrigen Temperaturen das verfügbare Gras abweiden, sind die Weidegänger der Fließgewässer wechselwarm. Das bedeutet, ihre Körpertemperatur und damit auch ihre Aktivität wird von der Umgebungstemperatur bestimmt. Trotz der vielen Sonnenstunden war der April 2021 mit 6,5 °C der kälteste April seit 1986 (durchschnittlich 7,8°C) und der zweitfrostreichste seit Messbeginn (Daten: DWD). Als Folge konnten die Tiere im Gewässer, die sich von Algen ernähren (Fische wie die Nase, aber auch Insektenlarven und Schnecken), im April noch kaum fressen, da dafür ihre Körpertemperatur und ihr Stoffwechsel zu niedrig waren. Das Missverhältnis zwischen Licht und Temperatur im April hat also das ohnehin bestehende Problem der Eutrophierung in vielen Gewässern deutlich verstärkt, was negative Auswirkungen weit über den April hinaus haben wird.
Einen kleinen Eindruck, wie es unter Wasser in der Nister aussieht vermittelt dieses kurze Video von Manfred Fetthauer, welches den veralgten Gewässergrund und bereits abgelöste, vorbei driftende Algen zeigt: Algendrift Mai 2021
Seit 89 Jahren der Nister treu geblieben / Albert Lerner
Nister verbindet Generationen
Als Kinder gingen wir gerne mit unserem Opa nach Heuzert, Heimborn und Ehrlich zum Fischen. Selbstgebaute Fliegen und eine Bambusrute waren die damalige Ausrüstung. Seit 2011 konnte ich diesen Abschnitt pachten. Mein Sohn kommt zum Fliegenfischen und unser Enkel ist auch dabei. Kindheitserlebnisse prägen Natur und Heimatverständnis. Albert Lerner
Unsere Nasen in Berlin
Leider hat Corona die Woche der Umwelt 2020 verhindert, aber 2021 findet sie im Hybrid-Format statt. In Berlin am 10. und 11. Juni 2021 und bereits jetzt online. Unser Beitrag ist hier zu finden.
Hier ein kleiner Clip mit weidenden Nasen an der Nister bei Stein-Wingert.
Was Fische wie die Nase für das Ökosystem Fliessgewässer bedeuten, daran haben wir jetzt einige Jahre zusammen mit der Universtät Koblenz-Landau und den Bürogemeinschaften für fisch- und gewässerökologische Studien, Marburg und Frankfurt geforscht. Umso erfreulicher ist es, dass wir unsere Arbeit auf der Woche der Umwelt in Berlin präsentieren dürfen.
Wenn Minus mal Minus nicht Plus ergibt – Das Problem der negativen Verstärkung
Die Nister war lange Zeit, trotz hoher Nährstoffkonzentrationen (v.a. Phosphate), das Vorzeigegewässer in Rheinland-Pfalz. Als „grünes Juwel des Westerwaldes“ konnte sie sowohl mit einer erfolgreichen Wiederansiedelung und natürlichen Reproduktion des Atlantischen Lachses als auch mit Populationen der stark bedrohten Flussperlmuschel und Bachmuschel aufwarten. Doch die letzten Jahrzehnte sind nicht spurlos an der Nister vorbeigegangen und die ökologische Gewässerqualität verschlechtert sich dramatisch. Diese Veränderung bemerken auch Anwohner, Spaziergänger oder Wanderer, die sich entlang der Nister in der Natur entspannen und sich am Gewässer erfreuen wollen. Wo man früher im Sommer das kühle Nass genießen konnte, sieht und riecht man nun ein stark veralgtes Gewässerbett, welches bereits eine simple Querung der Nister an einer Furt zu einer rutschigen und dadurch gefährlichen und ekligen Erfahrung macht. Ein eindeutiges Merkmal einer Gewässereutrophierung.
Der Begriff Eutrophierung bezeichnet die massenhafte Entwicklung von Algen in Folge einer übermäßigen Nährstoffverfügbarkeit. In Seen und aufgestauten Gewässerabschnitten, z.B. Talsperren, sind dies sogenannte Algenblüten planktischer Algen, also Massenentwicklungen von Algen, welche im Freiwasser „schweben“. Da Fließgewässern aufgrund ihrer Strömung keine Entwicklung planktischer Algen erlauben, äußert sich eine Eutrophierung in der Massenentwicklung am Gewässergrund wachsender Algen (benthische Algen). Genau das ist mittlerweile in jedem Frühjahr und Sommer an der Nister zu beobachten.
Doch eine hohe Nährstoffverfügbarkeit muss nicht immer zu Algenmassenentwicklungen führen. Auch dies lässt sich gut am Beispiel der Nister darlegen. Bereits in den 90er Jahren wies die Nister hohe Nährstoffkonzentrationen auf, die vergleichbar bzw. sogar höher als die heutigen waren. Dennoch wurden die ersten Algenmassenentwicklungen erst Anfang der 2000er Jahre beobachtet und 2010 von Manfred Fetthauer dokumentiert.
Doch was hat sich verändert, wenn nicht die Nährstoffverfügbarkeit? Hier kommt ein wesentlicher Aspekt von Gewässern zum Tragen, welcher sie von Landlebensräumen maßgeblich unterscheidet. Während wir an einer Wiese sehen, dass weniger Blumen blühen und weniger Insekten durch die Luft schwirren, führen die Bewohner der Gewässer meist ein Leben im Verborgenen. – Aber das ist in der Nister anders. Die Arten und ihre Bestände in der Nister sind aufgrund der herausragenden Bedeutung der Nister in Rheinland-Pfalz (u.a. Lach2000 Gewässer und Großmuschelhabitat) und durch das unermüdliche Engagement der ARGE Nister gut dokumentiert. Anhand der Befischungsdaten aus regelmäßigen Elektrobefischungen durch die Bürogemeinschaft für fisch- und gewässerökologische Studien (BfS Frankfurt), zeigt sich ein Bestandseinbruch großwüchsiger Fische (> 15 cm) im Jahr 1999 auf nur noch ca. 22% der im Vorjahr erfassten Bestände.
Die größten Bestandseinbrüche waren bei den Arten Nase, Barbe und Döbel zu verzeichnen, deren Bestände sich bis heute in der Nister nicht erholen konnten. Der Einbruch der Fischbestände wurde festgestellt, nachdem im Winter 1998/99 erstmalig Einflüge von 118 Kormoranen in das Sieg/Nister-System beobachtet wurden. Diese hocheffizienten Fischjäger haben sich seither im Siegsystem als wiederkehrende Wintergäste und sogar mit kleineren Brutkolonien etabliert, so dass mittlerweile regelmäßig Kormoraneinflüge in hoher Zahl an der Nister beobachtet werden. Daher ist ein kausaler Zusammenhang zwischen dem Einflug der Kormorane in das Sieg/Nister-System und dem Bestandseinbruch der Fische mehr als wahrscheinlich.
In den Folgejahren des dokumentierten Bestandseinbruchs der Großfische wurden in der Nister zunehmend Massenentwicklungen benthischer Algen, v.a. im Frühjahr, ebenso wie ein dramatischer Rückgang der Großmuschelpopulationen beobachtet. Um diese zunächst nur zeitlich korrelierenden Beobachtungen in einen kausalen Zusammenhang zu setzen, muss man sich vor Augen führen, dass nicht nur die Umwelt die Lebewesen beeinflussen, sondern auch die Lebewesen ihre Umwelt.
Das wohl offensichtlichste Beispiel für diese wechselseitige Beziehung zwischen Lebewesen und Umwelt ist der Mensch, welcher insbesondere in den gemäßigten Klimaten Europas seit über 2000 Jahren das Landschaftsbild formt und durch Ackerbau, Viehzucht, Entwaldung, Flussbegradigungen oder Stauhaltungen insbesondere Nährstoffkreisläufe, den Wasserkreislauf sowie das (Regional-) Klima beeinflusst. Vergleichbar, aber in viel kleinerem Maßstab, beeinflussen auch die im Gewässer lebenden Organismen ihre Umwelt.
Nase, Barbe und Döbel sind Fische der Äschen- und Barbenregion, welche sich bei der Nahrungssuche ausschließlich (Nase, Barbe) bzw. überwiegend (Döbel) am Gewässergrund aufhalten. Während Nasen sich ausschließlich von benthischen Algen ernähren, sind Barbe und Döbel omnivor (Allesfresser), wobei sich große Exemplare zunehmend von (benthischen) Kleinfischen (piscivor) ernähren. Bei der Nahrungssuche durchstöbern diese omnivoren Arten den Gewässergrund, um Insektenlarven, Krebse, Muscheln oder Fische aufzustöbern, wobei sie die Sedimente aufwirbeln und Steine umdrehen (sog. Bioturbation). Auf diese Weise halten diese drei Fischarten das Gewässerbett frei, ähnlich wie Herden von Schafen oder Kühen in der Landschaftspflege genutzt werden, um Offenlandflächen freizuhalten. Doch ebenso wie Offenlandflächen an Land zuwachsen, wenn die Weidegänger verschwinden, wächst auch das Gewässerbett zu, wenn die aquatischen Weidegänger fehlen.
Aufgrund der Strömung kann der Freiwasserbereich (die sog. fließende Welle) in Bächen und Mittelgebirgsflüssen nur von schwimmstarken Fischarten, aber nicht von Wirbellosen und Plankton (z.B. Algen) dauerhaft bewohnt werden. Daher sind diese Lebewesen auf den Gewässergrund als Lebensraum angewiesen. So wachsen Algen in Biofilmen, dem sogenannten Periphyton, auf der Oberseite der Subatrate (Steine, Kies, Sand, Totholz), während sich Organismen, die nicht auf Licht angewiesen sind, zum Schutz vor Fressfeinden oder der Strömung unter Steine oder in das Kieslückensystem zurückziehen. Dadurch ist das Kieslückensystem des Gewässerbetts (wissenschaftlich: Hyporheisches Interstitial, kurz Hyporheal) die biologisch aktivste Zone des Gewässers. Als dauerhafter Lebensraum von Wirbellosen und vor allem Mikroorganismen ist das Kieslückensystem für den Stoffkreislauf und die Selbstreinigungskraft des Gewässers von zentraler Bedeutung. Doch auch für kieslaichende Fische, wie Nasen, Äschen, Barben, Lachse, Forellen uvm., welche die meiste Zeit ihres Lebens im Freiwasser verbringen, ist ein sauberes gut belüftetes Kieslückensystem für den Arterhalt entscheidend, denn das Kieslückensystem ist „Brutplatz“ und die früheste Kinderstube (Dottersackstadium) dieser Arten.
Die Funktionsfähigkeit des Kieslückensystems ist hochgradig vom kontinuierlichen Austausch mit der fließenden Welle abhängig. Durch verschiedene Mechanismen (Sedimentation, Diffusion, Bioturbation, u.a.) werden partikuläre Stoffe (feine Sedimente und abgestorbenes organisches Material), aber auch gelöste Stoff (Nährstoffe, z.B. Stickstoff- und Phosphorverbindungen, und Gase wie Sauerstoff und Kohlendioxid) in das Kieslückensystem eingetragen bzw. in die fließende Welle abgegeben. Fehlen nun die wichtigen Weidegänger im System, so wird das Kieslückensystem durch eine dicke Algenschicht von der fließenden Welle getrennt und der Austausch wird unterbunden.
Die Algenmassenentwicklungen haben also einen erheblichen Einfluss auf die Lebensbedingungen im Fließgewässer; nicht nur im Kieslückensystem sondern auch in der fließenden Welle. In der Wachstumsphase einer solchen Algenblüte ist an sonnigen Tagen die Photosyntheseleistung der Algen so hoch, dass Sauerstoff schneller produziert wird als im Austausch mit der Luft abgegeben werden kann. Dies führt zu sehr hohen Sauerstoffkonzentrationen und einer Sauerstoffübersättigung von bis über 200%. Durch die hohe Sauerstoffkonzentration können Sauerstoffradikale entstehen, welche das empfindliche Kiemengewebe der Wasserorganismen (z.B. Fische) angreifen und irreparabel schädigen können. Nachts, wenn auch die Algen auf Grund der Dunkelheit atmen, also selbst Sauerstoff verbrauchen, kommt es dann zu einer starken Sauerstoffzehrung bis hin zu hypoxischen oder sogar anoxischen Bedingungen (wenig bis kein Sauerstoff). Vielen Gewässerorganismen droht unter solchen Sauerstoffmangelbedingungen der Erstickungstod. Die Photosynthese der Algen hat aber nicht nur Auswirkungen auf den Sauerstoffgehalt des Wassers, sondern auch auf dessen pH-Wert. Bei der Photosynthese nimmt die Alge Kohlendioxid auf und setzt Hydroxidionen (OH-) frei, wodurch der pH-Wert an sonnigen Tagen auf ≥ pH 9,5 steigen kann. Oberhalb von pH 8 verschiebt sich das Verhältnis von Ammonium (NH4+) zum toxischen Ammoniak (NH3). Bei den in nährstoffreichen Gewässern häufig anzutreffenden hohen Ammoniumgehalten kann diese Verschiebung zu einem Massensterben von Fischen und anderen Gewässerorganismen führen. Über Nacht wird der Hydroxidionen-Überschuss wieder ausgeglichen und der pH normalisiert sich. Dadurch treten während einer Algenblüte an sonnigen Tagen im Tagesgang massive Schwankungen von Sauerstoffkonzentration und pH-Wert auf.
Auch mit dem Absterben der Algen ist der schädliche Einfluss der Algenblüte auf das Gewässer nicht beendet, das Problem wird lediglich verlagert. Das abgestorbene Algenmaterial wir in die Lücken und Spalten des Kieslückensystems eingetragen, wo es die Porengänge verstopft, welche normalerweise Oberflächenwasser, Interstitialwasser und Grundwasser verbinden (biogene Kolmation). Unter Verbrauch von Sauerstoff wird nun das tote Algenmaterial im Kieslückensystem durch Mikroorganismen abgebaut. Je stärker die Poren verstopft sind, desto weniger sauerstoffreiches Oberflächenwasser kann in das Kieslückensystem eindringen, so dass es zu einer Sauerstoffzehrung bis hin zu hypoxischen und sogar anoxischen Bedingungen kommt. Unter diesen Bedingungen kann das Kieslückensystem seine wichtigen Ökosystemdienstleistungen ‚Selbstreinigung‘ und ‚Lebensraum‘ nicht mehr erfüllen. Durch diese Wechselwirkungen zwischen Gewässerbewohnern und Umweltbedingungen führt der Verlust der bestandsbildenden Arten Nase, Döbel und Barbe zu einer Verschlechterung der Lebensbedingungen im gesamten Fließgewässer und damit zu einem Verlust weiterer Arten. So ist der Bestand der Bachmuschel in der Nister von ca. 20.000 Tieren innerhalb von 14 Jahren um 90 % zurückgegangen. Aber auch einer Erholung der Bestände von Nase, Barbe und Döbel wirkt diese Entwicklung entgegen, da ein Großteil der empfindlichen Ei- und Larvenstadien die veränderten Bedingungen im Interstitial, v.a. den akuten Sauerstoffmangel, nicht überlebt. Die Nister befindet sich also in einer Abwärtsspirale, welche es zu durchbrechen gilt.
Die Abwärtsspirale zu durchbrechen wird allerdings durch den voranschreitenden Klimawandel zunehmend erschwert. Dieser hat in den vergangenen Jahren zu ungewöhnlich langandauernden Niedrigwasserphasen im Sommer geführt und auch die Winterhochwässer 18/19 und 19/20 fielen eher unterdurchschnittlich aus. Lange Niedrigwasserphasen sind problematisch, da sich das Wasser bei Niedrigwasser schneller und stärker aufwärmt und es dadurch auch weniger Sauerstoff aufnehmen kann, so dass über einen längeren Zeitraum hohe Temperaturen bei einer geringen Sauerstoffverfügbarkeit herrschen. Derartige Zustände können von den meisten Gewässerorganismen über kürzere Phasen toleriert werden, jedoch nicht über einen längeren Zeitraum hinweg. Darüber hinaus sedimentieren auch leichte, kleine Partikel relativ schnell ab, da die Strömung vergleichsweise gleichförmig (laminar) ist, also wenig Turbulenzen aufweist, und der Wasserstand niedrig ist. Dies führt zu einer zunehmenden Verstopfung (Kolmation) des Kieslückensystems, welches den Austausch zwischen fließender Welle und Kieslückensystem weiter einschränkt/unterbindet. Zusammen mit den schnelleren Abbauprozessen im Kieslückensystem durch die höheren Wassertemperaturen verschärft sich die oben beschriebene Problematik noch weiter. Wenn nun auch die Winterhochwässer nur unterdurchschnittliche Abflüsse verursachen, wird weniger Sediment verlagert und das Kieslückensystem nur sehr oberflächlich freigespült, wodurch die Ausgangsbedingungen im Kieslückensystem im Folgejahr noch schlechter ausfallen.
Im Jahr 1998 filtrierten und reinigten noch große Bestände von Bachmuscheln, mit einer Filtrationsleistung von 3-5 Litern pro Stunde je Individuum, ca. 1,92 Mio. Liter Nisterwasser pro Tag und große Fische (v.a. Nasen) sowie Wirbellose Weidegänger (v.a. Schnecken und Insektenlarven) hielten den Algenrasen kurz. Heute fehlen die großen Bestände dieser Tiere und die Nister droht in Algen und Schwebstoffen buchstäblich zu ersticken.
Zwar können wir an der Nister den Klimawandel nicht aufhalten, aber mit einer ganzheitlichen Strategie können wir die Abwärtsspirale der Nister durchbrechen und die Artenvielfalt aber auch die Ökosystemdienstleistungen in der Nister erhalten. Um das zu erreichen, muss eine solche Strategie sowohl Maßnahmen zur strukturellen Lebensraumverbesserung (Renaturierung), als auch Maßnahmen zum Schutz der Gewässerorganismen, wie beispielsweise Nachzucht und Besatz von Nasen und Bachmuscheln sowie die Vergrämung des Kormorans, beinhalten.
Mit breiter Unterstützung der Bevölkerung und der Politik ist es gelungen zwei Großprojekte ins Leben zu rufen, welche zusammengenommen diesen ganzheitlichen Ansatz verfolgen. Das ist zum einen das E+E-Vorhaben „Integrativer Artenschutz aquatischer Verantwortungsarten an der Nister“ (INTASAQUA) und zum anderen das Projekt „Biomanipulation in Mittelgebirgsflüssen“ (BIOEFFEKT I und II, Laufzeit: 1/2015-11/2018 bzw. 01/2019-12/2022). INTASAQUA untergliedert sich in Hauptprojekt (Laufzeit: 10/2019 – 09/2022) und Begleitforschung (Laufzeit: 01/2020-12/2023), wobei das Hauptprojekt durch das Bundesamt für Naturschutz (BfN) mit einem Anteil von 66 % mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU) gefördert wird. 23,6 % der Kosten trägt das Land Rheinland-Pfalz (MUEEF). Den restlichen Anteil von 10,4 % teilen sich der Landkreis Altenkirchen, der Westerwaldkreis, die Verbandsgemeinden Altenkirchen-Flammersfeld, Betzdorf-Gebhardshain, Hachenburg, Hamm und Wissen. Die Trägerschaft obliegt dem Landkreis Altenkirchen in Zusammenarbeit mit dem Westerwaldkreis. Die Begleitforschung von INTASAQUA wird vollständig durch das BfN mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU) finanziert und in einer Kooperation zwischen der Universität Koblenz-Landau, der Technischen Universität München (TUM) und der ARGE Nister durchgeführt. Die Projekte BIOEFFEKT I und II wurden/werden durch das Bundesministerium für Landwirtschaft und Ernährung gefördert (Förderkennzeichen 2813BM010 und 2818BM084) und von der Universität Koblenz-Landau in Kooperation mit der ARGE Nister, der Bürogemeinschaft für Fisch- und gewässerökologische Studien (Büros Marburg und Frankfurt) und der Dänischen Technischen Universität umgesetzt.
Autor: Daniela Mewes