Alle Artikel in: Forschung

Kältester April seit 40 Jahren – ein Problem auch für unsere Gewässer

Eutrophierung (Massenentwicklung von Algen durch einen hohen Nährstoffeintrag ins Gewässer) ist ein weitverbreitetes Problem unserer Gewässer, welches das Erreichen des Ziels der Wasserrahmenrichtlinie, den guten ökologischen Zustand, in vielen Fließgewässern verhindert. Doch in diesem Jahr wurde das Problem noch zusätzlich verstärkt. Wie auch die Pflanzen an Land, so wird auch das Wachstum der Algen hauptsächlich durch das Licht, also die Tageslänge und die Sonnenstunden, gesteuert. Laut Deutschem Wetterdienst (DWD) lag der April 2021 mit rund 215 Sonnenstunden deutlich über dem langjährigen Mittel (151 Sonnenstunden), so dass die Algen sehr gute Wachstumsbedingungen hatten. Anders als warmblütige Kühe, die auch bei niedrigen Temperaturen das verfügbare Gras abweiden, sind die Weidegänger der Fließgewässer wechselwarm. Das bedeutet, ihre Körpertemperatur und damit auch ihre Aktivität wird von der Umgebungstemperatur bestimmt. Trotz der vielen Sonnenstunden war der April 2021 mit 6,5 °C der kälteste April seit 1986 (durchschnittlich 7,8°C) und der zweitfrostreichste seit Messbeginn (Daten: DWD). Als Folge konnten die Tiere im Gewässer, die sich von Algen ernähren (Fische wie die Nase, aber auch Insektenlarven und Schnecken), im April noch kaum fressen, da dafür ihre Körpertemperatur und ihr Stoffwechsel zu niedrig waren. Das Missverhältnis zwischen Licht und Temperatur im April hat also das ohnehin bestehende Problem der Eutrophierung in vielen Gewässern deutlich verstärkt, was negative Auswirkungen weit über den April hinaus haben wird.

Einen kleinen Eindruck, wie es unter Wasser in der Nister aussieht vermittelt dieses kurze Video von Manfred Fetthauer, welches den veralgten Gewässergrund und bereits abgelöste, vorbei driftende Algen zeigt: Algendrift Mai 2021

Unsere Nasen in Berlin

Aussteller auf der Woche der Umwelt 2021

Leider hat Corona die Woche der Umwelt 2020 verhindert, aber 2021 findet sie im Hybrid-Format statt. In Berlin am 10. und 11. Juni 2021 und bereits jetzt online. Unser Beitrag ist hier zu finden.

sauberes Interstial in den Bereichen mit Nasen

Gewässergrund im Frühjahr 2019 in den Strecken mit Fischen

Hier ein kleiner Clip mit weidenden Nasen an der Nister bei Stein-Wingert.

Was Fische wie die Nase für das Ökosystem Fliessgewässer bedeuten, daran haben wir jetzt einige Jahre zusammen mit der Universtät Koblenz-Landau und den Bürogemeinschaften für fisch- und gewässerökologische Studien, Marburg und Frankfurt geforscht. Umso erfreulicher ist es, dass wir unsere Arbeit auf der Woche der Umwelt in Berlin präsentieren dürfen.

Wenn Minus mal Minus nicht Plus ergibt – Das Problem der negativen Verstärkung

Die Nister war lange Zeit, trotz hoher Nährstoffkonzentrationen (v.a. Phosphate), das Vorzeigegewässer in Rheinland-Pfalz. Als „grünes Juwel des Westerwaldes“ konnte sie sowohl mit einer erfolgreichen Wiederansiedelung und natürlichen Reproduktion des Atlantischen Lachses als auch mit Populationen der stark bedrohten Flussperlmuschel und Bachmuschel aufwarten. Doch die letzten Jahrzehnte sind nicht spurlos an der Nister vorbeigegangen und die ökologische Gewässerqualität verschlechtert sich dramatisch. Diese Veränderung bemerken auch Anwohner, Spaziergänger oder Wanderer, die sich entlang der Nister in der Natur entspannen und sich am Gewässer erfreuen wollen. Wo man früher im Sommer das kühle Nass genießen konnte, sieht und riecht man nun ein stark veralgtes Gewässerbett, welches bereits eine simple Querung der Nister an einer Furt zu einer rutschigen und dadurch gefährlichen und ekligen Erfahrung macht. Ein eindeutiges Merkmal einer Gewässereutrophierung.

Der Begriff Eutrophierung bezeichnet die massenhafte Entwicklung von Algen in Folge einer übermäßigen Nährstoffverfügbarkeit. In Seen und aufgestauten Gewässerabschnitten, z.B. Talsperren, sind dies sogenannte Algenblüten planktischer Algen, also Massenentwicklungen von Algen, welche im Freiwasser „schweben“. Da Fließgewässern aufgrund ihrer Strömung keine Entwicklung planktischer Algen erlauben, äußert sich eine Eutrophierung in der Massenentwicklung am Gewässergrund wachsender Algen (benthische Algen). Genau das ist mittlerweile in jedem Frühjahr und Sommer an der Nister zu beobachten.

Doch eine hohe Nährstoffverfügbarkeit muss nicht immer zu Algenmassenentwicklungen führen. Auch dies lässt sich gut am Beispiel der Nister darlegen. Bereits in den 90er Jahren wies die Nister hohe Nährstoffkonzentrationen auf, die vergleichbar bzw. sogar höher als die heutigen waren. Dennoch wurden die ersten Algenmassenentwicklungen erst Anfang der 2000er Jahre beobachtet und 2010 von Manfred Fetthauer dokumentiert.

Vergleich der Algenentwicklung in der Nister zwischen dem Frühjahr 2001 und 2010. Beide Fotos wurden von der Straßenbrücke in Stein-Wingert fotografiert. Fotos: M. Fetthauer

Doch was hat sich verändert, wenn nicht die Nährstoffverfügbarkeit? Hier kommt ein wesentlicher Aspekt von Gewässern zum Tragen, welcher sie von Landlebensräumen maßgeblich unterscheidet. Während wir an einer Wiese sehen, dass weniger Blumen blühen und weniger Insekten durch die Luft schwirren, führen die Bewohner der Gewässer meist ein Leben im Verborgenen. – Aber das ist in der Nister anders. Die Arten und ihre Bestände in der Nister sind aufgrund der herausragenden Bedeutung der Nister in Rheinland-Pfalz (u.a. Lach2000 Gewässer und Großmuschelhabitat) und durch das unermüdliche Engagement der ARGE Nister gut dokumentiert. Anhand der Befischungsdaten aus regelmäßigen Elektrobefischungen durch die Bürogemeinschaft für fisch- und gewässerökologische Studien (BfS Frankfurt), zeigt sich ein Bestandseinbruch großwüchsiger Fische (> 15 cm) im Jahr 1999 auf nur noch ca. 22% der im Vorjahr erfassten Bestände.

Einbruch der Großfischbestände in der Nister 1999, nachdem im Winter 1998/99 erstmals 118 Kormorane ins Sieg/Nister-System eingeflogen sind. Daten: BfS-Frankfurt

Die größten Bestandseinbrüche waren bei den Arten Nase, Barbe und Döbel zu verzeichnen, deren Bestände sich bis heute in der Nister nicht erholen konnten. Der Einbruch der Fischbestände wurde festgestellt, nachdem im Winter 1998/99 erstmalig Einflüge von 118 Kormoranen in das Sieg/Nister-System beobachtet wurden. Diese hocheffizienten Fischjäger haben sich seither im Siegsystem als wiederkehrende Wintergäste und sogar mit kleineren Brutkolonien etabliert, so dass mittlerweile regelmäßig Kormoraneinflüge in hoher Zahl an der Nister beobachtet werden. Daher ist ein kausaler Zusammenhang zwischen dem Einflug der Kormorane in das Sieg/Nister-System und dem Bestandseinbruch der Fische mehr als wahrscheinlich.

Links: Morgentlicher Kormoraneinflug bei Stein-Wingert. Rechts: Hochrechnung der Kormoraneinflüge in die Nister bei Stein-Wingert im Winter (Jan.-Mrz. + Okt.-Dez.) von 2015 bis 2020. Die Werte basieren auf dem Tagesdurchschnitt (Summe beobachteter Einflüge/Beobachtungstage) und sind auf den Gesamtzeitraum hochgerechnet (Tagesdurchschnitt x 182 Tage). Die Zahl über den Balken ist die Anzahl der Beobachtungstage im Untersuchungszeitraum. Foto und Daten: M. Fetthauer

In den Folgejahren des dokumentierten Bestandseinbruchs der Großfische wurden in der Nister zunehmend Massenentwicklungen benthischer Algen, v.a. im Frühjahr, ebenso wie ein dramatischer Rückgang der Großmuschelpopulationen beobachtet. Um diese zunächst nur zeitlich korrelierenden Beobachtungen in einen kausalen Zusammenhang zu setzen, muss man sich vor Augen führen, dass nicht nur die Umwelt die Lebewesen beeinflussen, sondern auch die Lebewesen ihre Umwelt.

Das wohl offensichtlichste Beispiel für diese wechselseitige Beziehung zwischen Lebewesen und Umwelt ist der Mensch, welcher insbesondere in den gemäßigten Klimaten Europas seit über 2000 Jahren das Landschaftsbild formt und durch Ackerbau, Viehzucht, Entwaldung, Flussbegradigungen oder Stauhaltungen insbesondere Nährstoffkreisläufe, den Wasserkreislauf sowie das (Regional-) Klima beeinflusst. Vergleichbar, aber in viel kleinerem Maßstab, beeinflussen auch die im Gewässer lebenden Organismen ihre Umwelt.

Nase, Barbe und Döbel sind Fische der Äschen- und Barbenregion, welche sich bei der Nahrungssuche ausschließlich (Nase, Barbe) bzw. überwiegend (Döbel) am Gewässergrund aufhalten. Während Nasen sich ausschließlich von benthischen Algen ernähren, sind Barbe und Döbel omnivor (Allesfresser), wobei sich große Exemplare zunehmend von (benthischen) Kleinfischen (piscivor) ernähren. Bei der Nahrungssuche durchstöbern diese omnivoren Arten den Gewässergrund, um Insektenlarven, Krebse, Muscheln oder Fische aufzustöbern, wobei sie die Sedimente aufwirbeln und Steine umdrehen (sog. Bioturbation). Auf diese Weise halten diese drei Fischarten das Gewässerbett frei, ähnlich wie Herden von Schafen oder Kühen in der Landschaftspflege genutzt werden, um Offenlandflächen freizuhalten. Doch ebenso wie Offenlandflächen an Land zuwachsen, wenn die Weidegänger verschwinden, wächst auch das Gewässerbett zu, wenn die aquatischen Weidegänger fehlen.

Fotos des Gewässergrunds der Nister im April 2019 in einem Bereich mit vielen (links) und einem Bereich mit wenigen (rechts) Nasen und Döbeln. Fotos: Manfred Fetthauer und Carola Winkelmann

Aufgrund der Strömung kann der Freiwasserbereich (die sog. fließende Welle) in Bächen und Mittelgebirgsflüssen nur von schwimmstarken Fischarten, aber nicht von Wirbellosen und Plankton (z.B. Algen) dauerhaft bewohnt werden. Daher sind diese Lebewesen auf den Gewässergrund als Lebensraum angewiesen. So wachsen Algen in Biofilmen, dem sogenannten Periphyton, auf der Oberseite der Subatrate (Steine, Kies, Sand, Totholz), während sich Organismen, die nicht auf Licht angewiesen sind, zum Schutz vor Fressfeinden oder der Strömung unter Steine oder in das Kieslückensystem zurückziehen. Dadurch ist das Kieslückensystem des Gewässerbetts (wissenschaftlich: Hyporheisches Interstitial, kurz Hyporheal) die biologisch aktivste Zone des Gewässers. Als dauerhafter Lebensraum von Wirbellosen und vor allem Mikroorganismen ist das Kieslückensystem für den Stoffkreislauf und die Selbstreinigungskraft des Gewässers von zentraler Bedeutung. Doch auch für kieslaichende Fische, wie Nasen, Äschen, Barben, Lachse, Forellen uvm., welche die meiste Zeit ihres Lebens im Freiwasser verbringen, ist ein sauberes gut belüftetes Kieslückensystem für den Arterhalt entscheidend, denn das Kieslückensystem ist „Brutplatz“ und die früheste Kinderstube (Dottersackstadium) dieser Arten.

Schematische Darstellung des hyporheischen Interstitials, kurz Hyporheal. Die wichtigsten Funktionen des Hyporheals sind der Austausch zwischen Grund- und Flusswasser, der biochemische Ab- und Umbau von Nähr- und org. Schadstoffen (Selbstreinigung des Gewässers) sowie die Bereitstellung eines Lebensraums für Kleinstlebewesen und juvenile Stadien von Fischen und Großmuscheln.

Die Funktionsfähigkeit des Kieslückensystems ist hochgradig vom kontinuierlichen Austausch mit der fließenden Welle abhängig. Durch verschiedene Mechanismen (Sedimentation, Diffusion, Bioturbation, u.a.) werden partikuläre Stoffe (feine Sedimente und abgestorbenes organisches Material), aber auch gelöste Stoff (Nährstoffe, z.B. Stickstoff- und Phosphorverbindungen, und Gase wie Sauerstoff und Kohlendioxid) in das Kieslückensystem eingetragen bzw. in die fließende Welle abgegeben. Fehlen nun die wichtigen Weidegänger im System, so wird das Kieslückensystem durch eine dicke Algenschicht von der fließenden Welle getrennt und der Austausch wird unterbunden.

Die Algenmassenentwicklungen haben also einen erheblichen Einfluss auf die Lebensbedingungen im Fließgewässer; nicht nur im Kieslückensystem sondern auch in der fließenden Welle. In der Wachstumsphase einer solchen Algenblüte ist an sonnigen Tagen die Photosyntheseleistung der Algen so hoch, dass Sauerstoff schneller produziert wird als im Austausch mit der Luft abgegeben werden kann. Dies führt zu sehr hohen Sauerstoffkonzentrationen und einer Sauerstoffübersättigung von bis über 200%. Durch die hohe Sauerstoffkonzentration können Sauerstoffradikale entstehen, welche das empfindliche Kiemengewebe der Wasserorganismen (z.B. Fische) angreifen und irreparabel schädigen können. Nachts, wenn auch die Algen auf Grund der Dunkelheit atmen, also selbst Sauerstoff verbrauchen, kommt es dann zu einer starken Sauerstoffzehrung bis hin zu hypoxischen oder sogar anoxischen Bedingungen (wenig bis kein Sauerstoff). Vielen Gewässerorganismen droht unter solchen Sauerstoffmangelbedingungen der Erstickungstod. Die Photosynthese der Algen hat aber nicht nur Auswirkungen auf den Sauerstoffgehalt des Wassers, sondern auch auf dessen pH-Wert. Bei der Photosynthese nimmt die Alge Kohlendioxid auf und setzt Hydroxidionen (OH-) frei, wodurch der pH-Wert an sonnigen Tagen auf ≥ pH 9,5 steigen kann. Oberhalb von pH 8 verschiebt sich das Verhältnis von Ammonium (NH4+) zum toxischen Ammoniak (NH3). Bei den in nährstoffreichen Gewässern häufig anzutreffenden hohen Ammoniumgehalten kann diese Verschiebung zu einem Massensterben von Fischen und anderen Gewässerorganismen führen. Über Nacht wird der Hydroxidionen-Überschuss wieder ausgeglichen und der pH normalisiert sich. Dadurch treten während einer Algenblüte an sonnigen Tagen im Tagesgang massive Schwankungen von Sauerstoffkonzentration und pH-Wert auf.

Tageszeitliche Schwankungen von Sauerstoffsättigung (links) und pH (rechts) in der Nister bei Stein-Wingert im Frühjahr 2016. Daten: M. Gerke, Universität Koblenz-Landau.

Auch mit dem Absterben der Algen ist der schädliche Einfluss der Algenblüte auf das Gewässer nicht beendet, das Problem wird lediglich verlagert. Das abgestorbene Algenmaterial wir in die Lücken und Spalten des Kieslückensystems eingetragen, wo es die Porengänge verstopft, welche normalerweise Oberflächenwasser, Interstitialwasser und Grundwasser verbinden (biogene Kolmation). Unter Verbrauch von Sauerstoff wird nun das tote Algenmaterial im Kieslückensystem durch Mikroorganismen abgebaut. Je stärker die Poren verstopft sind, desto weniger sauerstoffreiches Oberflächenwasser kann in das Kieslückensystem eindringen, so dass es zu einer Sauerstoffzehrung bis hin zu hypoxischen und sogar anoxischen Bedingungen kommt. Unter diesen Bedingungen kann das Kieslückensystem seine wichtigen Ökosystemdienstleistungen ‚Selbstreinigung‘ und ‚Lebensraum‘ nicht mehr erfüllen. Durch diese Wechselwirkungen zwischen Gewässerbewohnern und Umweltbedingungen führt der Verlust der bestandsbildenden Arten Nase, Döbel und Barbe zu einer Verschlechterung der Lebensbedingungen im gesamten Fließgewässer und damit zu einem Verlust weiterer Arten. So ist der Bestand der Bachmuschel in der Nister von ca. 20.000 Tieren innerhalb von 14 Jahren um 90 % zurückgegangen. Aber auch einer Erholung der Bestände von Nase, Barbe und Döbel wirkt diese Entwicklung entgegen, da ein Großteil der empfindlichen Ei- und Larvenstadien die veränderten Bedingungen im Interstitial, v.a. den akuten Sauerstoffmangel, nicht überlebt. Die Nister befindet sich also in einer Abwärtsspirale, welche es zu durchbrechen gilt.

Die Abwärtsspirale zu durchbrechen wird allerdings durch den voranschreitenden Klimawandel zunehmend erschwert. Dieser hat in den vergangenen Jahren zu ungewöhnlich langandauernden Niedrigwasserphasen im Sommer geführt und auch die Winterhochwässer 18/19 und 19/20 fielen eher unterdurchschnittlich aus. Lange Niedrigwasserphasen sind problematisch, da sich das Wasser bei Niedrigwasser schneller und stärker aufwärmt und es dadurch auch weniger Sauerstoff aufnehmen kann, so dass über einen längeren Zeitraum hohe Temperaturen bei einer geringen Sauerstoffverfügbarkeit herrschen. Derartige Zustände können von den meisten Gewässerorganismen über kürzere Phasen toleriert werden, jedoch nicht über einen längeren Zeitraum hinweg. Darüber hinaus sedimentieren auch leichte, kleine Partikel relativ schnell ab, da die Strömung vergleichsweise gleichförmig (laminar) ist, also wenig Turbulenzen aufweist, und der Wasserstand niedrig ist. Dies führt zu einer zunehmenden Verstopfung (Kolmation) des Kieslückensystems, welches den Austausch zwischen fließender Welle und Kieslückensystem weiter einschränkt/unterbindet. Zusammen mit den schnelleren Abbauprozessen im Kieslückensystem durch die höheren Wassertemperaturen verschärft sich die oben beschriebene Problematik noch weiter. Wenn nun auch die Winterhochwässer nur unterdurchschnittliche Abflüsse verursachen, wird weniger Sediment verlagert und das Kieslückensystem nur sehr oberflächlich freigespült, wodurch die Ausgangsbedingungen im Kieslückensystem im Folgejahr noch schlechter ausfallen.

Im Jahr 1998 filtrierten und reinigten noch große Bestände von Bachmuscheln, mit einer Filtrationsleistung von 3-5 Litern pro Stunde je Individuum, ca. 1,92 Mio. Liter Nisterwasser pro Tag und große Fische (v.a. Nasen) sowie Wirbellose Weidegänger (v.a. Schnecken und Insektenlarven) hielten den Algenrasen kurz. Heute fehlen die großen Bestände dieser Tiere und die Nister droht in Algen und Schwebstoffen buchstäblich zu ersticken.

Nister-Bachmuscheln auf Sediment. Foto: D. Mewes

Zwar können wir an der Nister den Klimawandel nicht aufhalten, aber mit einer ganzheitlichen Strategie können wir die Abwärtsspirale der Nister durchbrechen und die Artenvielfalt aber auch die Ökosystemdienstleistungen in der Nister erhalten. Um das zu erreichen, muss eine solche Strategie sowohl Maßnahmen zur strukturellen Lebensraumverbesserung (Renaturierung), als auch Maßnahmen zum Schutz der Gewässerorganismen, wie beispielsweise Nachzucht und Besatz von Nasen und Bachmuscheln sowie die Vergrämung des Kormorans, beinhalten.

Mit breiter Unterstützung der Bevölkerung und der Politik ist es gelungen zwei Großprojekte ins Leben zu rufen, welche zusammengenommen diesen ganzheitlichen Ansatz verfolgen. Das ist zum einen das E+E-Vorhaben „Integrativer Artenschutz aquatischer Verantwortungsarten an der Nister“ (INTASAQUA) und zum anderen das Projekt „Biomanipulation in Mittelgebirgsflüssen“ (BIOEFFEKT I und II, Laufzeit: 1/2015-11/2018 bzw. 01/2019-12/2022). INTASAQUA untergliedert sich in Hauptprojekt (Laufzeit: 10/2019 – 09/2022) und Begleitforschung (Laufzeit: 01/2020-12/2023), wobei das Hauptprojekt durch das Bundesamt für Naturschutz (BfN) mit einem Anteil von 66 % mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU) gefördert wird. 23,6 % der Kosten trägt das Land Rheinland-Pfalz (MUEEF). Den restlichen Anteil von 10,4 % teilen sich der Landkreis Altenkirchen, der Westerwaldkreis, die Verbandsgemeinden Altenkirchen-Flammersfeld, Betzdorf-Gebhardshain, Hachenburg, Hamm und Wissen. Die Trägerschaft obliegt dem Landkreis Altenkirchen in Zusammenarbeit mit dem Westerwaldkreis. Die Begleitforschung von INTASAQUA wird vollständig durch das BfN mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU) finanziert und in einer Kooperation zwischen der Universität Koblenz-Landau, der Technischen Universität München (TUM) und der ARGE Nister durchgeführt. Die Projekte BIOEFFEKT I und II wurden/werden durch das Bundesministerium für Landwirtschaft und Ernährung gefördert (Förderkennzeichen 2813BM010 und 2818BM084) und von der Universität Koblenz-Landau in Kooperation mit der ARGE Nister, der Bürogemeinschaft für Fisch- und gewässerökologische Studien (Büros Marburg und Frankfurt) und der Dänischen Technischen Universität umgesetzt.

Autor: Daniela Mewes

Posterpreis der Deutschen Gesellschaft für Limnologie für Michael Götten

Michael Götten, Mitarbeiter der Projektgruppe Fließgewässerökologie an der Universität Koblenz-Landau, erhielt auf der diesjährigen Jahrestagung für Limnologie in Münster einen Posterpreis.  Dieser Publikumspreis wird für die fünf besten Poster auf der Tagung verliehen und beinhaltet neben eine Prämie auch die Einladung zu einem Vortrag in einer wissenschaftlichen Einrichtung.

Auf dem  Poster werden Ergebnisse des BLE-Projektes zum Einfluss von Nasen auf Aufwuchsalgen vorgestellt.

 

Wissenschaftliche Untersuchungen bestätigen besondere Bedeutung der Nasen für die Gewässerqualität der Nister

Seit 2015 wird in einem wissenschaftlichen Experiment in der Nister bei Stein-Wingert untersucht, ob Nasen die Gewässerqualität verbessern können. Vor kurzem haben wir erste Ergebnisse dieses Projektes veröffentlicht (Gerke et al., 2018). In den Versuchen haben wir Gehwegplatten (40 x 40 cm) für mehrere Wochen auf dem Gewässergrund ausgebracht. Einige Platten waren mit elektrischen Fischzäunen „abgesperrt“ und einige für Fische frei zugänglich. Am Versuchsende wurde die Algenbiomasse zwischen den Platten mit und ohne Fischzugang verglichen.

Platte mit deutlichen Fraßspuren. Durch das Abweiden des Biofilms können Nasen die Algenbiomasse verringern.

Wir hatten erwartet, dass die Nasen die Algen auf den frei zugänglichen Platten abweiden und die Algenbiomasse daher auf diesen Platten niedriger ist. Überraschenderweise war aber das Gegenteil der Fall. Gleichzeitig war die Biomasse wirbelloser Weidegänger (z.B. Eintagsfliegenlarven) auf den abgezäunten Platten höher. Wir nehmen daher an, dass die wirbellosen Weidegänger die Algenbiomasse auf den abgezäunten Kacheln reduziert haben, weil sie hier sicher vor den Kleinfischen (z.B. Groppe, Schmerle) waren. Anders als Nasen ernähren sich diese kleinen Fischarten bevorzugt von wirbellosen Kleintieren. Das Verscheuchen der Kleinfische hat also die wirbellosen Weidegänger gefördert und damit indirekt die Algen reduziert.

Kleinfische beeinflussen die Algenbiomasse indirekt

Dieses unerwartete Ergebnis zeigt, wie komplex Nahrungsnetzbeziehungen im Gewässer sind und welche Auswirkungen das Fehlen großer Fischarten in einem Gewässer haben kann. Erstens sind weniger algenfressende Fische (Nasen) zu finden und die Algenbiomassen steigen. Zweitens explodieren die Kleinfischbestände. Die reduzieren die wirbellosen Weidegänger und die Algenbiomassen steigen noch stärker.

In einem etwas größeren Versuch mit insgesamt 12 ca. 8 m2 großen Fischkäfigen haben wir im letzten Sommer den Einfluss von Nasen und Döbeln auf die Algenbiomasse und die Qualität des Kiesbettes untersucht. In diesem Versuch haben wir tatsächlich einen deutlichen Einfluss dieser Fische auf die Algenbiomasse und darüber hinaus auf die Sauerstoffgehalte im Kiesbett gefunden. Nach vier Wochen war in den 4 Käfigen mit Nasen die Algenbiomasse niedriger als in den fischfreien Kontrollkäfigen und in allen Fischkäfigen war der Sauerstoffgehalt im Kiesbett  – ein Indikator für die Habitatqualität – höher als in den Kontrollkäfigen. Im Moment  bereiten wir gemeinsam mit dem BFS die Veröffentlichung dieser Ergebnisse vor.

Mittlere Algenbiomasse und mittlerer Sauerstoffgehalt in 13 cm Substrattiefe in Käfigen mit Nasen, Döbeln und Kontrollkäfigen ohne Fischbesatz

In unserem großskaligen Biomanipulationsexperiment, das bis Ende Oktober 2018 läuft,  gehen wir noch einen Schritt weiter und möchten herausfinden, ob sich der Besatz mit Nasen und Döbel auch in der Realität positiv auf das gesamte Ökosystem auswirkt.

 

 

BfN-Projekt eingeweiht

BFN_8691

Mit vielen illustren Gästen wurde auf dem „Hahnhof“ in Weidenacker bei Wissen das Projekt „Integrativer Artenschutz aquatischer Verantwortungsarten an der Nister“ (Intasaqua) vorgestellt. Auf Initiative der ARGE Nister, Betreiben der Universität Koblenz-Landau, allen voran Dr, Carola Winkelmann, und im Auftrag des Bundesamts für Naturschutz  werden sich in Zukunft verschiedene Wissenschaftler offiziell und mit insgesamt 1,2 Mio. Euro für den Schutz der Nister einsetzen.

BFN_8734 BFN_8718  BFN_8694BFN_8755
Fotos: Thorsten Ladda / Formwerk5

Ausführliche Information geben die Artikel der Siegener Zeitung und des AK-Kuriers.

 

„Wenn der Fluss krank ist“ – Drittes Gewässerseminar mit der Uni Koblenz

Zum Sommersemester 2017 bietet die Universität Koblenz-Landau gemeinsam mit Manfred Fetthauer von der ARGE Nister zum dritten Mal eine Fortbildungsmaßnahme für Mitarbeiter des haupt- und ehrenamtlichen Natur- und Gewässerschutzes an. Das Seminar „Gewässerökologie und Gewässerschutz“ findet am 3. und 4. April 2017 statt, Anmeldeschluss ist der 15. März 2017.

Zwei erfolgreiche Durchgänge im Jahr 2016 mit insgesamt rund 60 Teilnehmer haben gezeigt: Das Interesse an Gewässerökologie und Gewässerschutz sowie der Bedarf an fachlich fundierter Weiterbildung, die aktuelle Probleme und moderne Konzepte des Gewässerschutzes thematisiert, ist groß. Viele Fließgewässer in Deutschland sind gegenwärtig von den Zielen der bis 2027 umzusetzenden Wasserrahmenrichtlinie noch weit entfernt. Um diese Ziele zu erreichen, bedarf es weiterhin großer Anstrengungen aller beteiligten Akteure, der Landwirtschaft und der Kläranlagenbetreiber ebenso wie der Umweltbehörden und der Fischereiverbände.

Am Beispiel des Flusses Nister im nördlichen Rheinland-Pfalz führt die Leiterin der Arbeitsgruppe Fließgewässerökologie an der Universität Koblenz-Landau, Dr. Carola Winkelmann, den Seminarteilnehmern vor Augen, dass nicht pauschale Maßnahmenplanungen am ‚grünen Tisch‘ zum Erfolg führen können, sondern dass jeder Fluss und jeder Bach individuell hinsichtlich seiner hydrogeographischen und ökologischen Ausgangslage wie seiner anthropogenen Gefährdungen analysiert und dem entsprechend auch ‚therapiert‘ werden muss. Dies setzt ein hohes Maß an fachlicher Kompetenz in der Beurteilung des ökologischen Zustands eines Gewässers wie auch für geeignete Maßnahmenplanungen voraus.

Hierzu will auch das Seminar im April 2017 wieder beitragen, das in Zusammenarbeit mit der Deutschen Gesellschaft für Limnologie e.V. sowie dem Gewässerschutzverband ARGE Nister / Obere Wied e.V. durchgeführt wird. Teilnehmen können Mitarbeiterinnen und Mitarbeiter des haupt- und ehrenamtlichen Natur- und Gewässerschutzes, aus Umweltbehörden, der Wasserwirtschaftsverwaltung, von Fischerei- und Naturschutzverbänden sowie Gewässerschutzbeauftragte in Industrie- und Versorgungsunternehmen. Grundkenntnisse in Gewässerökologie werden vorausgesetzt.

30 Plätze sind für das Seminar am 03./04. April 2017 an der Universität in Koblenz zu vergeben, die Teilnahmegebühr beträgt 240,00 Euro. Weitere Informationen gibt es online unter https://www.uni-koblenz-landau.de/de/zfuw oder bei Norbert Juraske unter umwelt@uni-koblenz.de sowie 0261 287 1520.

(Text: Uni Koblenz)

 

Freeze Coring an der Nister

Im Mai 2016 haben wir Gefrierkerne („Freeze Cores“) aus unseren beiden Versuchsstrecken an der Nister gezogen. Die Freeze Coring-Methode ermöglicht es, ungestörte Sedimentproben aus verschiedenen Tiefenhorizonten des Interstitials zu gewinnen. Dazu wird zunächst eine etwa 0,5 Meter lange Hohllanze in die Gewässersohle eingeschlagen.
thumb_IMG_4571_1024
Anschließend wird 15 Minuten lang Flüssigstickstoff (-196°C) in die Lanze hineingeleitet, wodurch ein zylindrischer Probenkörper an der Lanze festfriert. Dieser Gefrierkern wird mithilfe eines Kettenzugs mit Dreibein geborgen.
thumb_IMG_4582_1024
Danach werden die einzelnen Sedimentschichten (0-10 cm, 10-20 cm und 20-30 cm Tiefe) mit Hammer und Meißel abgeschlagen.
thumb_IMG_4583_1024 2
Später wird im Labor die Korngrößenverteilung jeder Probe mittels Nasssiebung bestimmt. Uns interessiert insbesondere der Feinsedimentanteil (Fraktionen < 2 mm) sowie der Anteil an organischer Substanz im Feinsediment, da sich daraus Schlüsse zur Verstopfung des Interstitials ableiten lassen.

gesiebte Probe

Sedimentproben entnommen

Dr. Dirk Hübner vom Büro für fisch- und gewässerökologische Studien (BFS) nahm kürzlich gemeinsam mit Dr. Jörg Schneider, ebenfalls BFS, und Manfred Fetthauer Sedimentproben aus dem Bachbett der Nister. In Wasserproben aus verschiedenen Bodentiefen wurden unter anderem Sauerstoffgehalt und pH-Wert gemessen.
ARGE_9285 ARGE_9298
Dafür hatte Dirk Hübner an einigen Stellen in der Nister Schläuche in einer Tiefe von 10, 20 und 30 Zentimetern vergraben.
ARGE_9253 ARGE_9313
Schon die ersten Messwerte wie Sauerstoffgehalt und pH-Wert zeigten, dass der Algenbewuchs an manchen Stellen der Nister inzwischen tatsächlich bedrohliche Ausmaße annimmt.
Daneben wurden Sedimentproben sichergestellt, die in der Universität Koblenz-Landau gewässerbiologisch untersucht werden. Dafür wurden unter anderem auch einige Wochen zuvor Drahtgitterkörbe mit sauberem Kies in den Grund der Nister eingegraben. und nun, nach einem bestimmten Zeitabstand, wieder entnommen. Der Algenbewuchs und die Ablagerungen, die in der begenzten Zeit im Kiesbett gelandet sind, geben im Idealfall Aufschluss über den Zustand des Flusses. Zwei Stellen an der Nister besuchten die Biologen dabei.
ARGE_9251 ARGE_9273 ARGE_9269
Um Ergebnisse zum Algenwachstum während des Sommers zu erhalten, wurden neue Drahtgitterkörbe mit frischem Kies eingesetzt.